Prelimimry communication

ELECTRONIC TRANSITIONS OF POLYSILANES AND THEIR PHOTO-CHEMISTRY

BRIAN G. RAMSEY

Department of Chemistry, California State University. San Francisco, Calif. 94132 (U.S.A.) **(Received November lst, 1973)**

Summary _

Application of Woodward-Hoffmann selection rules to the photolysis of polysilanes requires that the electron transition be assigned to $\sigma \rightarrow \sigma^*$ rather than previously suggested $\sigma \rightarrow \pi(3d \text{ or } 4p)$.

A simple but important relationship exists between the assignment of the first electronic transition in polysilanes and their photolysis products_ Both linear and nonlinear [l] , cyclic polysilanes [23 and the cyclic trisilanes such as I, photolyze to yield divalent silicon intermediates R2Si:. This photochemical reaction is exemplified by eq. 1 for the photolysis of I [3].

Permethylated polysilanes, Me[SiMe,], Me, in their UV spectra exhibit an intense transition which rapidly moves from 192 nm $(n = 2)$ to longer wavelengths as *n* increases [4], for example λ_{max} 250 nm (ϵ 18400) $(n = 5)$. Similar **transitions have been observed in the spectra of polygermanes [5], poly**stannanes [6], and diplumbanes [7].

Based **on a linear correlation of transition energy with simple Hiickel** π orbital energies, we and others originally suggested $[8]$ that these polysilane (as well as analogous polygermane and -stannane) transitions were $\sigma(Si-Si) \rightarrow \pi$ in which the electron was promoted from a $Si-Si$ bond σ orbital to vacant

 π orbitals expressed as linear combinations of Si 3d (or 4p) atomic orbitals. **More recent measurements of the ionization potentials of a series of polysilanes** by Pitt [9], and Bock and Ensslin [10] now suggest $\sigma(Si-Si) \rightarrow \sigma^*(Si-Si)$ as an equally satisfactory assignment, in which σ and σ^* may be expressed as a linear **combination of localized Si-Si bond orbitals. Molecular orbital calculations** assuming a $\sigma \rightarrow \sigma^*$ transition and based on the Sandorfy C method have also **appeared [S]** _ **Obviously, the nature of the 1st UV transition in catenated Group IV metalloids is of widespread interest and controversy_**

If we at this point consider a trisilane with local C_{2v} symmetry such as IV, the $\sigma \rightarrow \pi$ transition has the symmetry assignment ¹ $A_1 \rightarrow {}^1A_2$ or ¹ $A_1 \rightarrow {}^1B_2$ whereas the $\sigma \rightarrow \sigma^*$ transition is ¹ $A_1 \rightarrow {}^1B_1$.

If we further make the reasonable assumption that the photochemical reaction of IV proceeds to V with concerted formation of the new Si-Si bond and the divalent silicon, and therefore with conservation of orbital symmetry, the Woodward-Hoffmann selection rules may be applied 1111.

In Fig. 1, we see the consequence of assuming a $\sigma \rightarrow \sigma^*$ transition in the **construction of a molecular orbital correlation diagram from a linear combina**tion of bonding and antibonding $Si-Si\sigma$ orbitals for the photolysis of IV (or **reaction 1). We note that the excited state half filled orbitals** a_1 **and** b_1 **of the irisilane correlate smoothly with the** sp^2 **(a₁) and** p_x **(b₁) orbitals of the silene, R'R*Si:. Since in this simple orbital approach the a, orbital decrease in energy is** comparable to the b_1 orbital increase in energy, we would expect that the **rearrangement of the 'B₁ excited state of I to the lowest excited state 'B₁ of the silene III, and ground state of II, to be an energetically favorable process with a low activation energy barrier. Note that if the photochemical reaction** proceeds through a triplet state, the silane I triplet state ${}^{3}B_1$ then correlates directly with the ground state of the triplet silene, ³B₁. Thus the initial assumption of a $\sigma \rightarrow \sigma^*$ transition in I is compatable with the observed photo**chemistry.**

In Fig. 2, a Woodwerd-Hoffmann diagram is constructed for a photochemical reaction proceeding through a $\sigma \rightarrow \pi d$ excited state. There are two sets of *d* orbitals (d_{xy} and d_{yz}) which might be used on the basis of symmetry alone

Fig. 1. A simple molecular orbital correlation diagram for reaction 1 based on the assumption that the lowest energy vacant orbitals of the polysilane are σ^* .

Fig. 2. A simple molecular orbital correlation diagram for reaction 1 based on the assumption that the lowest energy vacant orbitals of the polysilane are d_{π} (or p_{π}). A and B are linear combinations of Si d **orbitals for limiting cases of linear and bent molecules. B is shown in a bird's eye view.**

to construct "n" out of plane delocalized orbitals. These are shown in Fig. 2 on the basis of limiting geometries for linear and bent (bird's eye view) molecules. Here we realize that regardless of whether in a $\sigma \rightarrow \pi d$ excited state the electron is promoted to an orbital of b_2 or a_2 symmetry, the energy of the orbital

containing the promoted'electron increases during the rearrangement to disilane and silene. It is clear then that a photochemical reaction such as (I) proceeding through rearrangement of a $\sigma \rightarrow \pi$ **excited state (¹** B_2 **or ¹** A_2 **) must be, by several electron volts, an extremely unfavorable process energetically. In fact in the** case of a ¹ B_2 excited state a $[(R_3Si\text{-}SiR_3)^{(1)}R_2Si\text{-}^{\dagger}]$ complex intermediate **would be predicted which would require a subsequent electron transfer reaction to produce** $R_3SiSi_3R + R_2Si$ **:**

On the basis of these applications of the Woodward-Hoffmann rules, the ease with which reaction (1) takes place requires the assignment of the long wavelength polysilane transitions to $\sigma(Si=Si) \rightarrow \sigma^*(Si-Si)$ as opposed to a $\sigma \rightarrow \pi$ assignment. Of course if the $\sigma \rightarrow \sigma^*$ assignment is accepted "a priori" Fig. 1 **provides a mechanistic interpretation of the photochemical reaction.**

Application of Woodward-Hoffmann rules in an analogous manner to molecular orbitals generated from localized σ bonding and antibonding orbitals, and from Si 3d (or 4p) atomic orbitals for the cyclic system $(Me_2Si)_n$ ($n = 4, 5$) or 6) and for $(Me_3Si)_4Si$ also produces completely analogous correlation diagrams, with the same conclusions, i.e. that the reactions must proceed through σ^* excited state. Thus, photolysis of $(Me_3Si)_4Si$ is predicted to yield (Me_3Si) , Si ; and the reported [2] failure of cyclo-(Me₂Si)₄ to yield Me₂Si: and cyclo-**(Me,Si), should be attributed to the instability of cyclohexamethyltrisiane rather than any inherent symmetry restrictions on the reaction. Indeed, the** observation [2] of small amounts of $H[Si(Me)_2]_2H$ from the photolysis of **cycle-[(Me),Si]. suggests formation of cycle-[(Me),Si], which then opens to** \cdot SiMe₂SiMe₂ \cdot ₂ \cdot ₂

The questions of whether the first ionization of alkanes is from a C-C orbital of essentially σ symmetry or from C-H orbitals of π symmetry and **along with it the assignment of the first UV transition in saturated alkanes also have not been resolved [12]** _ **The failure of alkanes to undergo a photochemical** reaction analogous to that of the silenes, to form carbenes R_2C ; would seem to **support assignment of the 1st UV absorption maxima in the spectra of alkanes** to a transition originating from delocalized $CH₂$ orbitals of π symmetry, since **the photochemical reaction to form carbenes analogous to (I) is then prohibited** by arguments such as those applied to the $\sigma \rightarrow \pi$ transition of silanes in Fig. 2. If the first alkane transition originates from the C-C σ framework, $\sigma \rightarrow \sigma^*$, there. **would appear to be no reason not to observe alkane photolysis, on vacuum UV irradiation, with R,C: carbene formation.**

To summarize, the application of Woodward-Hoffmann symmetry selection rules to the photolysis of polysilanes to form divalent silicon intermediates (silenes), R_2Si ; requires that these reactions proceed through σ^* *excited* **states*, and supports the assignment of the controversial long wave**length transition in polysilanes, polygermanes, and polystannanes to $\sigma \rightarrow \sigma^*$ rather than $\sigma \rightarrow \pi$. We believe this to be the first time the Woodward-Hoffmann **rules have been applied to the photochemistry of organometalloids, and the first time the results of a photochemical reaction have been utilized to support the assignment of an electronic transition.**

 $\ddot{\cdot}$

^{*}The possibility or even probability that the σ^* orbitals in the excited states may include important contributions from appropriate symmetry orbitals derived from in plane Si d_{xz} orbitals is not to be **excluded.**

References

- **1 M. Ishikawa and M. Kumada. Chem. Commun.,(1971) 489: J. Organometal. Chem.. 42 (19'72) 333.**
- **2 M. Ishfkawa and M. Kumada. J. Organometal. Chem.. 42 (1972) 325.**
- 3 H. Sakurai, Y. Kobayashi and N. Nakadaira, J. Amer. Chem. Soc., 93 (1971) 5272
- **4 (a) H. Gilman and P.J. Morris. J. Organometal. Chem.. 6 (1966) 102.**
- **(b) M. Kumada and K. Tamao. Advan. Organometal. Chem.. 6 (1966) 1 and leading references.**
- **W. Drenth. J.G.** *Noltes.* **E.J. Bulten and H.M.J. Creemers. J. Organometal. Chem.. 17 (1969) 173. PP. Shorygin. V.A. Petukhov, U.M. Nefedov. S.P. Kolimikov and V.I. Shiryaev, Tear. Exp. Kbim, Akad. Nauk. UKr. SSR. 2 (1966) 190.**
- 7 W. Drenth, L.C. Willemsens, G.J.M. Van der Kerk and J.A. Vliegenthart, J. Organometal. Chem., *2* **(1964) 279.**
- **(a) B.G. Ramsey. Electronic Transitions in Organometalloids, Academic Press, New York, N.Y.. 1969.**
- **(b) C.G. Pitt. L.L. Jones and B.G. Ramsey, J. ~mer. Chem. SOL 89 (1967) 5471**
- **9 C.G. Pitt, M.M. Bursey and P.F.** Rogerson, J. Amer. Chem. Soc.. 92 (1970) 519
- 10 H. Bock and W*.* Ensslin, Angew. Chem. Intern. Ed., 10 (1971) 404.
11 *(*a) R.B. Woodward and R. Hoffmann, J. Amer. Chem. Soc., 87 (1965) 395: 87 (1965) 2046; 87 (196!
- *12* **(a) J.N. Murrell and W. Schmidt, Faraday Trans II, (1972) 1709. (b) R.B. Woodward and R. Hoffmann. The Conservation of Orbital Symmetry. Academic Press, 1970.**
- (b) W.A. Lathan, L.A. Curtis and J.A. Pople, Mol. Phys., 22 (1971) 1081. **(C) A.D. Baker. D. Belteridge. N.R. Kemp and R.E. Kirby, J. Mol. Strut-, 8 (1971) 75.**
	- **(d) B. Naragan. Mol. Phys.. 23 (1972) 281.**